
sPHENIX code
development

Michael P. McCumber
sPHENIX Software

5/15/2015

Things we lost in the divorce
sPHENIX universe PHENIX universe

GEANT4 sim

Fast sim

Jet background subtraction

Flow Jets

much of this was user-land
code with non-standard outputs

Jet output

We need to port this back into sPHENIX, but it is best if we
redesign it so that it plays well with the GEANT4 interface

Work Plan:
Jet Storage† - a default set of jet reconstructions for common use (will be completed today)

Jet Reconstruction Code* - port the ATLAS method (???) and our Particle Flow reco (Javier)

Evaluation Objects† - break the SVTX and Calo evaluation into two modules:
(1) places new association contains onto the DST (SVTXEVAL/SvtxTrack_MCParticle_MultiMap)
(2) reads the objects and dumps out the ntuple files

FastSim†* - modules to read the G4 input list, produces smeared tracks, simulates towers, and
eval lookup objects, swappable with GEANT4 modules

//—Restored functionality from divorce———————————————————————

SVTX reco improvement†* - understand increase in 6+1 track reconstructions, fix?

Jet Evaluator† - traces the ancestry to report true jet momentum, etc. Outputs to DST objects
and new ntuple

SVTX+TPC evaluation†* - what does the TPC need to produce a proper evaluation and output
object?

SVTX Track Redesign†* - very wasteful storage-wise, doesn’t contain a full set of track
projections and covariance, prevents modular reconstructions

SVTX Reco Modularization* - vertex reconstructions with Rave, separate Kalman fitter with full
GEANT4 material, full Kalman fit with vertex -> SvtxPrimaryTrack (for DCA-less studies)

† - good match to me
* - others can help

Jet Reconstruction Storage
Plan A: A Map of Map of Jets

Advantage that one can either loop over all Tower AntiKt jets at once, jet radii
aren’t stored by name, storages sorts by typical use scenario
Disadvantage of two calls to get directly to a jet (what radii, what id)

JetMapContainer
(ex: AntiKt tower jets)

JetMap
(r=0.2 jets)

JetMap
(r=0.3 jets)

JetMap
(r=0.6 jets)…

Jet0 Jet1 Jetn… Jet0 Jet1 Jetn… Jet0 Jet1 Jetn…

Storage on the DST would appear:
Jets/
 TowerAntiKtJets
 CaloAntiKtJets
 FlowAntiKtKets

Usage Scenarios:

Loop over JMC->begin; JMC->end
 Loop over JM->begin; JM->end
 Jet* = &iter->second

Loop over JM[r]->begin; JM[r]->end
 Jet* = &iter->second

Jet Reconstruction Storage
Plan B: A Map of Jets

Disadvantage - Little messy, difficult to loop over all jets from a particular
algorithm without already knowing all R values at compile time

JetMap
(r=0.2 jets)

JetMap
(r=0.3 jets)

JetMap
(r=0.6 jets)…

Jet0 Jet1 Jetn… Jet0 Jet1 Jetn… Jet0 Jet1 Jetn…

Storage on the DST would appear:
Jets/
 TowerAntiKtJetsR0p2
 TowerAntiKtJetsR0p3

…
 TowerAntiKtJetsR0p6
 CaloAntiKtJetsR0p2

…
CaloAntiKtJetsR0p6

 FlowAntiKtKetsR0p2
…

Usage Scenarios:

Go out and fetch each node separately
 Loop over JM->begin; JM->end
 Jet* = &iter->second

Loop over JM->begin; JM->end
 Jet* = &iter->second

Advantage - Simple, single place for map-wise info, familiar to users

Jet Reconstruction Storage
Plan C: A Map of Jets

Advantage - flexible for future algorithms and parameters, needed?
Disadvantage - Searching repeatedly will be slow, obscured storage of what is
available

JetMap

Jet0 Jet1 Jetn… Jet0 Jet1 Jetn… Jet0 Jet1 Jetn…

Storage on the DST would appear:
Jets/
 Jets

Usage Scenarios:

develop a search that returns the algorithm and
algorithm parameter as a map of pointers

map<Jet*> jets = JM->fetch(“AntiKtCaloJets”,R);

Generally seems like a bad idea…

Jet Storage Object

Stores:
unique identifier within the map
4 vector: px, py, pz, energy (alternate: p, eta, phi, et)
associations to constituent object unique ids (towers, clusters, tracks)

multimap< sourceid, unsigned int>
under consideration: 4x4 covariance uncertainty (px,py,pz,e)

Interface:
gets/sets for px,py,pz,e
handles for pt, ET, p, phi, eta, etc
bring multi map interface out for ancestry tracing operations

Plan A: Lightweight 4-vector + associations

Plan B: Extend PseudoJet/PHJet/TLorentzVector object
Inherits from PseudoJet/PHJet/TLorentzVector
Adds multi map storage for clustered objects

Interface:
PsuedoJet interface
bring multi map interface out for ancestry tracing operations

Jet Reconstruction Library
We need a single module for each “kind” of jet
reconstruction:

TowerAntiKtJetReco
CaloAntiKtJetReco
ParticleFlowAntiKtJetReco
(other algorithms?)
Jet
JetMap
JetMapContainer (plan A only)

I’ve started a private g4jets library based on Plan A
options, filled in storage objects, compiles.

Pick a plan, I will modify to suit, and submit into github
today.

I’ll start on Eval objects when I get back.

(need to include a port of the ATLAS bkg method) }

Future Jet Studies
Particle Flow Jets - better calorimeter clustering

Bottom Jets
 - initial b-jet id in p+p with G4
 - tracking: what design is needed for 2nd vertex reco

Jet Rejection - shape cuts

Jet Purity Studies with Jet Modification

Recoil jet background subtractions

Raw level tune of the FastSim

